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Question by Hilbert:
Representation of f(x) ∈ R[x1, . . . , xn] as sum
of squares of polynomials in R[x1, . . . , xn].
(False. Counterexample:

f(x1, x2) = 1 + x21x
4
2 + x41x

2
2 − 3x21x

2
2.)

Modified version:
Representation of f(x) ∈ R[x1, . . . , xn] as sum
of squares of polynomials in R(x1, . . . , xn).

(Must assume f non-negative
i.e. f(x) ≥ 0 for all x ∈ Rn.)

General version:
Representation of f(x) ∈ R[x1, . . . , xn] as
sum of squares of polynomials in R(x1, . . . , xn)
where f ≥ 0.

(For what family of R does this holds.)

(Solved by)

Emil Artin was an Austrian

Mathematician. He is best

known for his work on al-

gebraic number theory, con-

tributing largely to class field

theory and a new construc-

tion of L-functions.

Real Fields: A field R which has a total order
e.g. Q,R,R[x], etc.

Real Closed Fields: R is a said to be a real

closed field If R[i] ∼= R[x]

(x2+1)
is algebraically

closed e.g. R, Ralg, etc.

Positive Cone of R: The subset P = {x ∈ R :
x ≥ 0} is a positive cone of a real field R.

Lemma: Let R be a real closed field containing
Q, then

∑
R2 is the intersection of the positive

cones of all orderings of R.

Theorem: Let R be a real closed field and A
and R-algebra of finite type. If there exists an
R-algebra homomorphism ϕ : A→ K for some
real closed extension of R , then there exists
an R-algebra homomorphism ψ : A→ R.

Example:The Puiseux series, denoted as R(X)
contains element of the form

∞∑
i=k

aiX
i
q with k ∈ Z, q ∈ N, ai ∈ R

It is a non-Archimedean real closed field.

???
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Answer to the Question:
Let R be a real closed field and f ∈
R[x1, . . . , xn]. If f is nonnegative on Rn (as
a function), then f is a sum of squares in the
field of rational functions R(x1, . . . , xn).

Proof:
Let R be a real closed field. Suppose on con-
trary that f cannot be represented as a sum of
squares in R(x1, . . . , xn). So, there exists an
ordering ⪯ on R(x1, . . . , xn) such that f ⪯ 0
i.e f is negative with respect to the ordering.
Consider the map

ϕ :
R[x1, . . . , xn, T ]

(fT 2 + 1)
−→ R(x1, . . . , xn)

g(x1, . . . , xn, T ) 7−→ g(x1, . . . , xn, 1)

We show that it is an R-algebra homomor-

phism. Let g, h ∈ R[X,T ]

(fT2+1)
and r ∈ R, then

ϕ(g + h) = (g + h)(X, 1)

= g(X, 1) + h(X, 1)

= ϕ(g) + ϕ(h)

and

ϕ(rg) = (rg)(X, 1)

= rg(X, 1)

= rϕ(g).

By Artin-Lang Homomorphism Theorem, there
exists an induced R-algebra homomorphism

ψ :
R[x1, . . . , xn][T ]

(fT 2 + 1)
−→ R

As 0 maps to 0 in such homomorphism, so
ψ(fT 2+1) = 0. This implies, ∃ (y1, . . . , yn) ∈
Rn such that

f(y1, . . . , yn) ∗ 12 + 1 = 0

f(y1, . . . , yn) = −1

which is a contradiction as f ≥ 0 (as a function)
on Rn.
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Further Development

Q) If f ∈ R[x1, . . . , xn] and f ≥ 0, then f = f21 + . . . , f2r for fi ∈ R(x1, . . . , xn). Is there any
upperbound on r?

Answer
Let R be a real closed field and let f ∈ R(x1, . . . , xn) is positive definite then there exists
f1, . . . , f2n ∈ R(x1, . . . , xn) such that

f = f21 + · · ·+ f22n

Open Problems

Q) Let K be an arbitrarily field and f ∈ K(x). Does f ≥ 0 implies f can be represented as sum
of squares in K(x)?

Q) If the above holds, is there any bound to the number of squares needed?
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