Hilbert's 17th Problem

Naufil Sakran

Graduate Colloquium

September 13, 2022

Representation of $f(x) \in \mathbb{R}[x_1, \dots, x_n]$ as sum of squares of polynomials in $\mathbb{R}[x_1, \dots, x_n]$.

(False. Counterexample:

 $f(x_1, x_2) = 1 + x_1^2 x_2^4 + x_1^4 x_2^2 - 3x_1^2 x_2^2.$

Modified version:

Representation of $f(x) \in \mathbb{R}[x_1, \dots, x_n]$ as sum of squares of polynomials in $\mathbb{R}(x_1, \dots, x_n)$.

(Must assume f non-negative i.e. $f(x) \ge 0$ for all $x \in \mathbb{R}^n$.)

General version:

Representation of $f(x) \in R[x_1, \ldots, x_n]$ as sum of squares of polynomials in $R(x_1, \ldots, x_n)$ where $f \ge 0$.

(For what family of R does this holds.)

(Solved by)

Emil Artin was an Austrian Mathematician. He is best known for his work on algebraic number theory, contributing largely to class field theory and a new construction of L-functions.

Representation of $f(x) \in \mathbb{R}[x_1, \dots, x_n]$ as sum of squares of polynomials in $\mathbb{R}[x_1, \dots, x_n]$.

(False. Counterexample:

 $f(x_1, x_2) = 1 + x_1^2 x_2^4 + x_1^4 x_2^2 - 3x_1^2 x_2^2.$

Modified version:

Representation of $f(x) \in \mathbb{R}[x_1, \dots, x_n]$ as sum of squares of polynomials in $\mathbb{R}(x_1, \dots, x_n)$.

(Must assume f non-negative i.e. $f(x) \ge 0$ for all $x \in \mathbb{R}^n$.)

General version:

Representation of $f(x) \in R[x_1, \ldots, x_n]$ as sum of squares of polynomials in $R(x_1, \ldots, x_n)$ where $f \ge 0$.

(For what family of R does this holds.)

(Solved by)

Emil Artin was an Austrian Mathematician. He is best known for his work on algebraic number theory, contributing largely to class field theory and a new construction of L-functions. <u>Real Fields:</u> A field R which has a total order e.g. $\mathbb{Q}, \mathbb{R}, \mathbb{R}[x]$, etc.

 $\label{eq:Real_closed_fields: R is a said to be a real closed field If <math display="inline">R[i]\cong \frac{R[x]}{(x^2+1)}$ is algebraically closed e.g. $\mathbb{R}, \mathbb{R}_{\mathrm{alg}}$, etc.

Positive Cone of R: The subset $P = \{x \in R : x \ge 0\}$ is a positive cone of a real field R.

Representation of $f(x) \in \mathbb{R}[x_1, \dots, x_n]$ as sum of squares of polynomials in $\mathbb{R}[x_1, \dots, x_n]$.

(False. Counterexample: $f(x_1,x_2) = 1 + x_1^2 x_2^4 + x_1^4 x_2^2 - 3 x_1^2 x_2^2.)$

Modified version:

Representation of $f(x) \in \mathbb{R}[x_1, \dots, x_n]$ as sum of squares of polynomials in $\mathbb{R}(x_1, \dots, x_n)$.

(Must assume f non-negative i.e. $f(x) \ge 0$ for all $x \in \mathbb{R}^n$.)

General version:

Representation of $f(x) \in R[x_1, \ldots, x_n]$ as sum of squares of polynomials in $R(x_1, \ldots, x_n)$ where $f \ge 0$.

(For what family of R does this holds.)

(Solved by)

Emil Artin was an Austrian Mathematician. He is best known for his work on algebraic number theory, contributing largely to class field theory and a new construction of L-functions. <u>Real Fields:</u> A field R which has a total order e.g. $\mathbb{Q}, \mathbb{R}, \mathbb{R}[x]$, etc.

 $\label{eq:Real_closed_fields: R is a said to be a real closed field If <math display="inline">R[i]\cong \frac{R[x]}{(x^2+1)}$ is algebraically closed e.g. $\mathbb{R}, \mathbb{R}_{\mathrm{alg}}$, etc.

Positive Cone of R: The subset $P = \{x \in R : x \ge 0\}$ is a positive cone of a real field R.

Lemma: Let R be a real closed field containing \mathbb{Q} , then $\sum R^2$ is the intersection of the positive cones of all orderings of R.

<u>Theorem</u>: Let R be a real closed field and Aand R-algebra of finite type. If there exists an R-algebra homomorphism $\phi: A \to K$ for some real closed extension of R, then there exists an R-algebra homomorphism $\psi: A \to R$.

Representation of $f(x) \in \mathbb{R}[x_1, \dots, x_n]$ as sum of squares of polynomials in $\mathbb{R}[x_1, \dots, x_n]$.

(False. Counterexample: $f(x_1,x_2) = 1 + x_1^2 x_2^4 + x_1^4 x_2^2 - 3 x_1^2 x_2^2.)$

Modified version:

Representation of $f(x) \in \mathbb{R}[x_1, \dots, x_n]$ as sum of squares of polynomials in $\mathbb{R}(x_1, \dots, x_n)$.

(Must assume f non-negative i.e. $f(x) \ge 0$ for all $x \in \mathbb{R}^n$.)

General version:

Representation of $f(x) \in R[x_1, \ldots, x_n]$ as sum of squares of polynomials in $R(x_1, \ldots, x_n)$ where $f \ge 0$.

(For what family of R does this holds.)

(Solved by)

Emil Artin was an Austrian Mathematician. He is best known for his work on algebraic number theory, contributing largely to class field theory and a new construction of L-functions. <u>Real Fields:</u> A field R which has a total order e.g. $\mathbb{Q}, \mathbb{R}, \mathbb{R}[x]$, etc.

 $\label{eq:Real_closed_fields: R is a said to be a real closed field If <math display="inline">R[i] \cong \frac{R[x]}{(x^2+1)}$ is algebraically closed e.g. $\mathbb{R}, \, \mathbb{R}_{\mathrm{alg}}, \, \mathrm{etc.}$

Positive Cone of R: The subset $P = \{x \in R : x \ge 0\}$ is a positive cone of a real field R.

Lemma: Let R be a real closed field containing \mathbb{Q} , then $\sum R^2$ is the intersection of the positive cones of all orderings of R.

<u>Theorem</u>: Let R be a real closed field and A and R-algebra of finite type. If there exists an R-algebra homomorphism $\phi: A \to K$ for some real closed extension of R, then there exists an R-algebra homomorphism $\psi: A \to R$.

 $\underbrace{\text{Example:}}_{\text{contains element of the form}} \text{The Puiseux series, denoted as } \mathbb{R}(X)$

$$\sum_{i=k}^{\infty}a_{i}X^{\frac{i}{q}} \quad \text{with } k\in\mathbb{Z},\,q\in\mathbb{N},\,a_{i}\in\mathbb{R}$$

It is a non-Archimedean real closed field.

Answer to the Question:

Let R be a real closed field and $f \in R[x_1, \ldots, x_n]$. If f is nonnegative on R^n (as a function), then f is a sum of squares in the field of rational functions $R(x_1, \ldots, x_n)$.

Proof:

Let R be a real closed field. Suppose on contrary that f cannot be represented as a sum of squares in $R(x_1,\ldots,x_n)$. So, there exists an ordering \preceq on $R(x_1,\ldots,x_n)$ such that $f \preceq 0$ i.e f is negative with respect to the ordering. Consider the map

$$\phi: \frac{R[x_1, \dots, x_n, T]}{(fT^2 + 1)} \longrightarrow \overline{R(x_1, \dots, x_n)}$$

 $g(x_1,\ldots,x_n,T)\longmapsto g(x_1,\ldots,x_n,1)$

We show that it is an R-algebra homomorphism. Let $g,h\in \frac{R[X,T]}{(fT^2+1)}$ and $r\in R,$ then

$$\phi(g+h) = (g+h)(X,1)$$

= $g(X,1) + h(X,1)$
= $\phi(g) + \phi(h)$

and

$$\phi(rg) = (rg)(X, 1)$$
$$= rg(X, 1)$$
$$= r\phi(g).$$

By Artin-Lang Homomorphism Theorem, there exists an induced $R\mbox{-}{algebra}$ homomorphism

$$\psi: \frac{R[x_1, \dots, x_n][T]}{(fT^2+1)} \longrightarrow R$$

As 0 maps to 0 in such homomorphism, so $\psi(fT^2+1)=0$. This implies, $\exists (y_1,\ldots,y_n)\in R^n$ such that

$$f(y_1, \dots, y_n) * 1^2 + 1 = 0$$

 $f(y_1, \dots, y_n) = -1$

which is a contradiction as $f \ge 0$ (as a function) on \mathbb{R}^n .

Further Development

Q) If $f \in R[x_1, \ldots, x_n]$ and $f \ge 0$, then $f = f_1^2 + \ldots, f_r^2$ for $f_i \in R(x_1, \ldots, x_n)$. Is there any upperbound on r?

Answer

Let R be a real closed field and let $f \in R(x_1, \ldots, x_n)$ is positive definite then there exists $f_1, \ldots, f_{2^n} \in R(x_1, \ldots, x_n)$ such that

$$f = f_1^2 + \dots + f_{2^n}^2$$

Open Problems

Q) Let K be an arbitrarily field and $f \in K(x)$. Does $f \ge 0$ implies f can be represented as sum of squares in K(x)?

Q) If the above holds, is there any bound to the number of squares needed?

References

- 1. Real Algebraic Geometry, Bochnak J., Coste M., Roy M.-F.
- 2. Algorithms in Real Algebraic Geometry, Basu S., Pollack R., Roy M.-F.
- 3. *Mathematical Development arising from Hilbert Problems*, Proceeding of Symposia in Pure Mathematics.